

SBC System Implemented On FPGA Technology

Laurentiu-Cristian Duca*.

*Politehnica University of Bucharest,

Automatic Control and Computers Faculty,
Str. Splaiul Independentei no. 313,

060042, Bucharest, Romania (Tel: 40-765-310-869; e-mail:laurentiu.duca@cs.pub.ro).

Abstract: This paper describes a SBC system implemented on FPGA technology. The system is made by
processor, a memory, an UART and an unit for performance evaluation, interfaced to a system bus. The
processor runs a firmware program which is used to initialize and diagnose the system. The technique used
for simulating the system operation like in the real environment is, also, described. The product should
be considered as an open source.

1. INTRODUCTION

The current application is part of a project that involves the
construction of an embedded system dedicated for optimal
implementation of embedded applications. The target is to
obtain a high grade of efficiency and low cost in
implementing embedded applications with a higher grade of
complexity. The system is implemented with reconfigurable
hardware circuits and development software distributed with
royalty free license. The control logic of the system will be
modelled in software by using languages of type HDL and
then implemented on FPGA circuits. In this way, will
disappear the costs of production between different versions
which exists in the case of manufacturing the classic
components and the classic system. The general structure of a
system dedicated to embedded applications is presented in
Fig. 1.

Fig. 1. The general structure of an embedded system

We meet, in function of the complexity of the system, up to
three groups of processors, each type with its own functions.
From the first group are the processing units dedicated to the
intensive computational part of the application (AIC). In the
case that is necessarily a high grade of configurability and
connectivity with the external medium, it can be utilized a

processor dedicated for the activity of administration and
management of the system (MP). This kind of applications
are meet in the embedded systems which operate in
telecommunications, production fabrics and medical industry.
The processor that manages the system is utilized for
deployment, configuration and control of the applications.
When more systems are required to work together, it is
utilized a processor which merges the ccommunication tasks
with the intensive computational tasks (CTL-AIC).
This paper describes the implementation of the principal
system without the processors for intensive computational
processing.

2. THE HARDWARE ARCHITECTURE

The implemented system is presented in Fig. 2. The intensive
computational processors (AIC) are not included in this
system.
In this moment, exists many implementations on FPGA of
processors of type RISC. The most accessible are the GPL
licensed solutions which have a compiler for high level
programming. From a study made on Internet I observed that
much from the community open-source has attention on the
following CPUs: OpenRISC1k, LEON (SPARC) and MIPS.

Fig. 2. The hardware architecture

CPU MEM

UART

PCC

BUS

CTL
AIC

AIC

MP

RAM

Flash CF

JTAG

RS232

Ethernet

All the components are written in Verilog. The processor is a
MIPS R2000 equivalent and implements the MIPS I
instruction set architecture. The processor and the other
components communicate using a WishBone bus. This
standard has license GPL. The processor address the
peripheral units using a memory address decoding scheme.
The memory unit contains read-only memory and read-write.
There is the boot code and its variables. The input/output
console will be represented by the UART unit. This unit has
the role to connect the system to a personal computer. The
performance count unit (PCC) permits the measurement of
the execution time for a sequence of program executed by the
CPU to perform a computation.
The system bus is the wishbone bus (WB). In the following
figures is shown the basics about the wishbone bus. In Fig. 3
are shown the main signals of the wishbone bus. In Fig. 4 is
shown the basic read operation.

Fig. 3. The main signals of the wishbone bus

Fig. 4. The basic read operation of the wishbone bus

On a system bus can be present more units of type master and
slave. In this situation is necessary an arbitration scheme.
This scheme is presented in the Fig. 5.

Fig. 5. Interfacing master and slave units on system bus

One single master has access to the bus at a given moment.
This master is selected by A1. The master that gains the
access from the arbiter will have the signal "slave ack" valid.
The other units of type master will have the signal "slave
ack" on 0. One single slave can be addressed at a givent time.
The slave that will be addressed will have the signals "master
stb" and "cyc" on 1. The other slaves have the "stb" signal on
0. The course TSEA02 from the University of Linkoping
implements a scheme of this type.
Ucore is a processor implemented at the Chinese Academy of
Science. It respects the set of instructions of the MIPS I ISA
and the specification of the processor MIPS R2000. It is a
processor with 6 levels of pipeline: IF, ID, RF, EX, MEM,
WB. The processor had a Harvard architecture and it had a
continuous request to read the instruction memory. I had to
put a verification such that, at each WB.ack received, the unit
that fetches the instructions - to verify if there exists an
active request from the data unit and to allow the data unit to
access the memory. In this way, the Von Neuman
architecture was set.
The processor brings two units of master type at the bus
interface: the unit to fetch the instructions and the unit
to read and write data. By blocking the signal WB.cyc, a unit
of type master can keep the access grant of the bus.
The processor in the native mode is big endian.The skeleton
of the system is taken from the course of the Linkopings
faculty. Here I have modified the interface of the processor
with the bus and I had made the system little-endian.
The memory is implemented with a unit of memory with
access at the bus. The processor accesses the memory only by
the system bus. The disadvantage is made by the fact that,
this way the access at the memory takes two clock cycles
(stb+ack). The pipeline unit is blocked during the memory
access. The arbitration of the bus delays the pipeline with
another period of clock.
The serial communication of the system UART is taken from
Jeung Jong Lee [3]. The sources had some problems. The
receiver in the initial state was "ready" and signalizing the
event of receiving a character. For clock frequencies of 25

wb.dati

wb.ack

wb.addr

Master

Slave

wb.stb

wb.cyc

wb.dato

wb.addr

wb.stb

wb.cyc

wb.ack

wb.dati

master
units

slave
units

master
units

slave
units

A
1

A
2

Mhz, the unit was functioning at frequencies less that 57600
bps. Due to the fact that the length of a bit of data was
wanted to be divided in 16 parts, but the division didn't care
about the rest. The autor was considering that the system
clock had a frequency much greater then the frequency of
transmission. At this unit I have wrote the interface to the
WB bus.
The unit for immediate testing permits the processor to
access two system ports, both of 32 bits. In the current
implementation, I have linked one port to 8 buttons and the
other to 8 leds. And, next to this unit, I have put a timer
which can be utilized for measuring the performance of the
system.

3. THE SOFTWARE SYSTEM

The base software system is made in two parts. The first part
is the compiler, and the second is the firmware
that runs on the embedded system.
The development environment is cygwin and gcc. Files of
type Makefile are used for compiling the source code
and introduce it in the file ".bit" which will be loaded onto
the FPGA. For synthesis and implementation of the hardware
sources it is used the development system Xilinx ISE
Webpack 9.1. This includes a tool named "data2mem" which
can be used for translating an executable file from ".elf"
format in that part of the memory that is utilized by the
processor implemented on the FPGA. This portion takes a
specific place from the ".bit" file which is told in the file of
constraints.
The firmware is written in C. The compiler used is mips-gcc.
This was compiled on the cygwin suct that it can run on
Windows, by using the program cygwin.The compiler will
generate object code for the processor R2000
having the set of instructions MIPS I ISA.
The firmware is used for starting the system and contains the
routines for initialization and access to resources. At system
start, the program counter has an initial value where it should
be placed the first instruction. Then it must be initialized the
registers SP and GP. Also, it must initialized the table of
interrupts. Having stack and global data, can jump to the
function main() placed in the zone of code. To the compiler it
is told the zones in which must be placed the segments of
data and code, in a file ".ld" used by the link-editor.
Because we work in firmware, the functions that access the
console like printf, and those who handle text are wrote in a
simplified manner and have characteristics dedicated to the
platform. The unit UART is used for the interface with the
user. The last step is to give the control to the program that is
dedicated for the utilisation of the system.

4. STANDARD SIMULATION

The standard simulation of the system is made by supervising
the diagram of transitions of the signals necessary to verify
the basis functionality of the system.
The first step in testing the system is to verify that in
simulation the system starts correctly and loads the first
instruction from the memory. The start sequence of the
system is shown in Fig. 6.

Fig. 6. The start sequence of the system

The boot address for the processor is 0x40000000. The unit
that reads the instructions is one of the two masters that are
attached on the system bus. This unit makes a request to
access the system bus by setting the signal m0.stb on 1. And
will set the address of the desired instruction on the bus by
using the signal m0.addr. The data that comes from the
memory driver is transmitted to the processor via the system
bus. It is used a scheme that converts from little endian to big
endian. This scheme is necessary because the system is little
endian and the processor is big endian. In the final, the
processor has access to the instruction, which is placed in the
internal signal imem_data. In the figure it can be observed
that the program counter (m0.addr) is incremented and points
to the next instruction. The code of the first instruction is
0x3C1C4000 and represents the instruction "lui gp, 0x4000".
The next instruction is "ori gp,gp,0x5600" and is represented
by the code 0x379C5600. As it was presented in the chapter
referred to the software of the system, first are initialized the
registers GP and SP.

5. THE EQUIVALENT SIMULATOR

This system runs in a real environment on a board with
FPGA circuits. In reality, any change of the hardware sources
implies the need to synthesize and route the design on the
FPGA - to observe the behaviour of the system. In
simulation, the advantage is that there are no processes for
synthesis and routing the system on the FPGA. The code is
synthesizable, so we can suppose that a correct simulator
would have the same results like in reality. The disadvantage

of the simulator is that it works much slower, the speed of the
simulation is with two orders of magnitude slower. That is
why the simple components can be only modelated
behaviouraly for wining time.
When the time to run the program on the processor is long in
reality, the dimension of the database with the events of the
simulation is very large.We will attach few signals or none in
such a simulation, because we don't need to. The problem of
functionality of the system has been solved at the begining,
when we verified if the program counter and the instructions
are correctly executed.
Now we solve the problem to simulate the hole system. In
this sense, the interaction between the real user and the
system is simulated by using a virtual console. See Fig. 7.

Fig. 7. The equivalent simulator

The virtual console is implemented using some
functionalities of Verilog 2001. For the user, the simulation is
transparently. He sees only that the speed of work is slower.
In this way, the display of the messages on the screen are
solved by using a mechanism of deserialising from the serial
line the characters that are sent and display
them using the instruction "$display()". The commands from
the user to the system are taken by using a modality of work
with the file system. The user writes in a file the command in
the same manner as the console and in simulation it is read
the content of this file and whenever it changes, it will be
sent the command on the serial line.

6. PERFORMANCE

This system is intended for having good configurability and
access to the hardware implemented part of the intensive
computational units. Those units bring up the real
performance of an embedded system.
To compute de clock per instruction indicator, I choose a
representative sequence of instructions to be run on the
system. The measurement was done by using a hardware
counter to count the clock periods elapsed from a given
moment of time and another to count the number of
instructions executed. These counters are accessible for
reading and resetting by the processor at a given address of
memory.
The code sequence generates the Fibonacci terms and for
each two consecutive terms, computes the biggest divisor.
The are no integer division instruction used. The counter
measurement is presented in Table 1.

Table 1
Number of Number of Computed CPI

instructions time periods
1754 8313 4.74

The memory access unit introduce delays in pipeline of 2
clock periods. Each time the instruction unit and data unit of
the processor changes ownership on the bus, the pipeline is
blocked another clock period. Considering this and the
performance measurement, the processor pipeline has an
efficiency of about 1.5-2 CPI. The system performances
would be considerable improved by attaching a cache
memory near the processor.

7. CONCLUSION

This paper presents an SBC system realised by using and
porting the main components from open source architectures.
The performance of the system is lower than the systems
present on the market by means of clock per instruction and
the fact that FPGA porting implies a clock frequency lower
than then using an ASIC chip.
The advantage is that the entire system, hardware and
software is contained at source level. In this way, the
performances can always be improved and debugging is more
facile.
The implementation of the system does not depend on the
market availability of dedicated ASIC and memory chips.
The HDL sources can be recompiled at any moment on a
newer FPGA circuit.
With simple and usefull technics from Verilog 2001, this
system can be simulated in a similar way with its real
functionality.

7. REFERENCES

Bachle R., Building the gcc toolchain for the MIPS
processor, www.linux-mips.org/wiki/Toolchains

Jeung J.L., UART implementation in Verilog,
www.cmoexod.com

Petrescu A., Course on Digital Computers, www. csit-
sun.pub.ro

Segger O. et al., Course on Computer Hardware,
www.da.isy.liu.se/courses/tsea44/coursemtrl_07

Zhang F., The ucore processor,
www.opencores.org/projects.cgi/web/ucore/overview

Verilog simulator

SBC

tx

rx

Virtual
console

