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Abstract: This paper describes a SBC system implemented on FPGA technology. The system is made by 
processor, a memory, an UART and an unit for performance evaluation, interfaced to a system bus. The 
processor runs a firmware program which is used to initialize and diagnose the system. The technique used 
for simulating the system operation  like  in the real environment is, also, described. The product  should 
be considered as an open source.  

 

1. INTRODUCTION 

The current application is part of a project that involves the 
construction of an embedded system dedicated for optimal 
implementation of embedded applications. The target is to 
obtain a high grade of efficiency and low cost in 
implementing embedded applications with a higher grade of 
complexity. The system is implemented with reconfigurable 
hardware circuits and development software distributed with 
royalty free license. The control logic of the system will be 
modelled in software by using languages of type HDL and 
then implemented on FPGA circuits. In this way, will 
disappear the costs of production between different versions 
which exists in the case of manufacturing the classic 
components and the classic system. The general structure of a 
system dedicated to embedded applications is presented in 
Fig. 1. 
 

 
Fig. 1. The general structure of an embedded system 
 
We meet, in function of the complexity of the system, up to 
three groups of processors, each type with its own functions. 
From the first group are the processing units dedicated to the 
intensive computational part of the application (AIC). In the 
case that is necessarily a high grade of configurability and 
connectivity with the external medium, it can be utilized a 

processor dedicated for the activity of administration and 
management of the system (MP). This kind of applications 
are meet in the embedded systems which operate in 
telecommunications, production fabrics and medical industry. 
The processor that manages the system is utilized for 
deployment, configuration and control of the applications. 
When more systems are required to work together, it is 
utilized a processor which merges the ccommunication tasks 
with the intensive computational tasks (CTL-AIC). 
This paper describes the implementation of the principal 
system without the processors for intensive computational 
processing. 
 

2. THE HARDWARE ARCHITECTURE 

The implemented system is presented in Fig. 2. The intensive 
computational processors (AIC) are not included in this 
system. 
In this moment, exists many implementations on FPGA of 
processors of type RISC. The most accessible are the GPL 
licensed solutions which have a compiler for high level 
programming. From a study made on Internet I observed that 
much from the community open-source has attention on the 
following CPUs: OpenRISC1k, LEON (SPARC) and MIPS. 
 

  
Fig. 2. The hardware architecture 
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All the components are written in  Verilog. The processor is a 
MIPS R2000 equivalent and implements the MIPS I 
instruction set architecture. The processor and the other 
components communicate using a WishBone bus. This 
standard has license GPL. The processor address the 
peripheral units using a memory address decoding scheme. 
The memory unit contains read-only memory and read-write. 
There is the boot code and its variables. The input/output 
console will be represented by the UART unit. This unit has 
the role to connect the system to a personal computer. The 
performance count unit (PCC) permits the measurement of 
the execution time for a sequence of program executed by the 
CPU to perform a computation. 
The system bus is the wishbone bus (WB). In the following 
figures is shown the basics about the wishbone bus. In Fig. 3 
are shown the main signals of the wishbone bus. In Fig. 4 is 
shown the basic read operation. 
 

 
Fig. 3. The main signals of the wishbone bus 
 

 
Fig. 4. The basic read operation of the wishbone bus 
 
On a system bus can be present more units of type master and 
slave. In this situation is necessary an arbitration scheme. 
This scheme is presented in the Fig. 5. 

 
Fig. 5. Interfacing master and slave units on system bus 
 
One single master has access to the bus at a given moment. 
This master is selected by A1. The master that gains the 
access from the arbiter will have the signal "slave ack" valid. 
The other units of type master will have the signal "slave 
ack" on 0. One single slave can be addressed at a givent time. 
The slave that will be addressed will have the signals "master 
stb" and "cyc" on 1. The other slaves have the "stb" signal on 
0. The course TSEA02 from the University of Linkoping 
implements a scheme of this type. 
Ucore is a processor implemented at the Chinese Academy of 
Science. It respects the set of instructions of the MIPS I ISA 
and the specification of the processor MIPS R2000. It is a 
processor with 6 levels of pipeline: IF, ID, RF, EX, MEM, 
WB. The processor had a Harvard architecture and it had a 
continuous request to read the instruction memory. I had to 
put a verification such that, at each WB.ack received, the unit 
that fetches the instructions - to verify if there exists an  
active request from the data unit and to allow the data unit to 
access the memory. In this way, the Von Neuman 
architecture was set. 
The processor brings two units of master type at the bus 
interface: the unit to fetch the instructions and the unit  
to read and write data. By blocking the signal WB.cyc, a unit 
of type master can keep the access grant of the bus. 
The processor in the native mode is big endian.The skeleton 
of the system is taken from the course of the Linkopings 
faculty. Here I have modified the interface of the processor 
with the bus and I had made the system little-endian. 
The memory is implemented with a unit of memory with 
access at the bus. The processor accesses the memory only by 
the system bus. The disadvantage is made by the fact that, 
this way the access at the memory takes two clock cycles 
(stb+ack). The pipeline unit is blocked during the memory 
access. The arbitration of the bus delays the pipeline with 
another period of clock. 
The serial communication of the system UART is taken from 
Jeung Jong Lee [3]. The sources had some problems. The 
receiver in the initial state was "ready" and signalizing the 
event of receiving a character. For clock frequencies of 25 
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Mhz, the unit was functioning at frequencies less that 57600 
bps. Due to the fact that the length of a bit of data was 
wanted to be divided in 16 parts, but the division didn't care 
about the rest. The autor was considering that the system 
clock had a frequency much greater then the frequency of 
transmission. At this unit I have wrote the interface to the 
WB bus. 
The unit for immediate testing permits the processor to 
access two system ports, both of 32 bits. In the current 
implementation, I have linked one port to 8 buttons and the 
other to 8 leds. And, next to this unit, I have put a timer 
which can be utilized for measuring the performance of the 
system. 
 

3. THE SOFTWARE SYSTEM 

The base software system is made in two parts. The first part 
is the compiler, and the second is the firmware 
that runs on the embedded system.  
The development environment is cygwin and gcc. Files of 
type Makefile are used for compiling the source code 
and introduce it in the file ".bit" which will be loaded onto 
the FPGA. For synthesis and implementation of the hardware 
sources it is used the development system Xilinx ISE 
Webpack 9.1. This includes a tool named "data2mem" which 
can be used for translating an executable file from ".elf" 
format in that part of the memory that is utilized by the 
processor implemented on the FPGA. This portion takes a 
specific place from the ".bit" file which is told in the file of 
constraints. 
The firmware is written in C. The compiler used is mips-gcc. 
This was compiled on the cygwin suct that it can run on 
Windows, by using the program cygwin.The compiler will 
generate object code for the processor R2000 
having the set of instructions MIPS I ISA. 
The firmware is used for starting the system and contains the 
routines for initialization and access to resources. At system 
start, the program counter has an initial value where it should 
be placed the first instruction. Then it must be initialized the 
registers SP and GP. Also, it must initialized the table of 
interrupts. Having stack and global data, can jump to the 
function main() placed in the zone of code. To the compiler it 
is told the zones in which must be placed the segments of 
data and code, in a file ".ld" used by the link-editor. 
Because we work in firmware, the functions that access the 
console like printf, and those who handle text are wrote in a 
simplified manner and have characteristics dedicated to the 
platform. The unit UART is used for the interface with the 
user. The last step is to give the control to the program that is 
dedicated for the utilisation of the system. 
 

4. STANDARD SIMULATION 

The standard simulation of the system is made by supervising 
the diagram of transitions of the signals necessary to verify 
the basis functionality of the system.  
The first step in testing the system is to verify that in 
simulation the system starts correctly and loads the first 
instruction from the memory. The start sequence of the 
system is shown in Fig. 6.  

 

 
Fig. 6. The start sequence of the system 
 
The boot address for the processor is 0x40000000. The unit 
that reads the instructions is one of the two masters that are 
attached on the system bus. This unit makes a request to 
access the system bus by setting the signal m0.stb on 1. And 
will set the address of the desired instruction on the bus by 
using the signal m0.addr. The data that comes from the 
memory driver is transmitted to the processor via the system 
bus. It is used a scheme that converts from little endian to big 
endian. This scheme is necessary because the system is little 
endian and the processor is big endian. In the final, the 
processor has access to the instruction, which is placed in the 
internal signal imem_data. In the figure it can be observed 
that the program counter (m0.addr) is incremented and points 
to the next instruction. The code of the first instruction is 
0x3C1C4000 and represents the instruction "lui gp, 0x4000". 
The next instruction is "ori gp,gp,0x5600" and is represented 
by the code 0x379C5600. As it was presented in the chapter 
referred to the software of the system, first are initialized the 
registers GP and SP. 
 

5. THE EQUIVALENT SIMULATOR 

This system runs in a real environment on a board with 
FPGA circuits. In reality, any change of the hardware sources 
implies the need to synthesize and route the design on the 
FPGA - to observe the behaviour of the system. In 
simulation, the advantage is that there are no processes for 
synthesis and routing the system on the FPGA. The code is 
synthesizable, so we can suppose that a correct simulator 
would have the same results like in reality. The disadvantage 



 
 

     

 

of the simulator is that it works much slower, the speed of the 
simulation is with two orders of magnitude slower. That is 
why the simple components can be only modelated 
behaviouraly for wining time. 
When the time to run the program on the processor is long in 
reality, the dimension of the database with the events of the 
simulation is very large.We will attach few signals or none in 
such a simulation, because we don't need to. The problem of 
functionality of the system has been solved at the begining, 
when we verified if the program counter and the instructions 
are correctly executed. 
Now we solve the problem to simulate the hole system. In 
this sense, the interaction between the real user and the 
system is simulated by using a virtual console. See Fig. 7. 
 

 
Fig. 7. The equivalent simulator 
 
The virtual console is implemented using some 
functionalities of Verilog 2001. For the user, the simulation is 
transparently. He sees only that the speed of work is slower. 
In this way, the display of the messages on the screen are 
solved by using a mechanism of deserialising from the serial 
line the characters that are sent and display 
them using the instruction "$display()". The commands from 
the user to the system are taken by using a modality of work 
with the file system. The user writes in a file the command in 
the same manner as the console and in simulation it is read 
the content of this file and whenever it changes, it will be 
sent the command on the serial line. 
 

6.  PERFORMANCE 

This system is intended for having good configurability and 
access to the hardware implemented part of the intensive 
computational units. Those units bring up the real 
performance of an embedded system.  
To compute de clock per instruction indicator, I choose a 
representative sequence of instructions to be run on the 
system. The measurement was done by using a hardware 
counter to count the clock periods elapsed from a given 
moment of time and another to count the number of 
instructions executed. These counters are accessible for 
reading and resetting by the processor at a given address of 
memory. 
The code sequence generates the Fibonacci terms and for 
each two consecutive terms, computes the biggest divisor. 
The are no integer division instruction used. The counter 
measurement is presented in Table 1. 
 

Table 1 
Number of Number of Computed CPI 

instructions time periods 
1754 8313 4.74 

  
The memory access unit introduce delays in pipeline of 2 
clock periods. Each time the instruction unit and data unit of 
the processor changes ownership on the bus, the pipeline is 
blocked another clock period. Considering this and the 
performance measurement, the processor pipeline has an 
efficiency of about 1.5-2 CPI. The system performances 
would be considerable improved by attaching a cache 
memory near the processor. 
 

7. CONCLUSION 

This paper presents an SBC system realised by using and 
porting the main components from open source architectures. 
The performance of the system is lower than the systems 
present on the market by means of clock per instruction and 
the fact that FPGA porting implies a clock frequency lower 
than then using an ASIC chip. 
The advantage is that the entire system, hardware and 
software is contained at source level. In this way, the 
performances can always be improved and debugging is more 
facile.  
The implementation of the system does not depend on the 
market availability of dedicated ASIC and memory chips. 
The HDL sources can be recompiled at any moment on a 
newer FPGA circuit. 
With simple and usefull technics from Verilog 2001, this 
system can be simulated in a similar way with its real 
functionality. 
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